A high-performance test in the real world

QNatal[™] Advanced, an automated, noninvasive prenatal screening assay, demonstrates excellent performance characteristics, high positive predictive values and very low "no-call" rates. It's validated technology delivering accurate results with clear positive or negative reporting.

Unparalleled sensitivity and specificity

QNatal Advanced was verified and validated in a study of 2,752 pregnant women.¹

Singletons	T21	T18	T13	Monosomy X
# Pos/# Specs	90/2,637	30/2,637	20/2,637	1/2,637
Positives Detected	90/90	30/30	20/20	1/1
Sensitivity (%)	>99.9	>99.9	>99.9	>99.9
Specificity (%)	>99.9	>99.9	>99.9	>99.9

Singleton data are combined analysis of verification (n=2,085) and validation (n=552) sets

High positive predictive value (PPV)

In real-world data on the first 10,000 patients, QNatal Advanced has higher PPVs than what is reported in the literature.

Positive Test	Prevalence	PPV		
Result		Cumulative* ²⁻⁷ (literature)	QNatal Advanced ¹	
Trisomy 21	1:185	91%	97%	
Trisomy 18	1:470	74%	90%	
Trisomy 13	1:1500	41%	75%	
Sex aneuploidy	1:1000	48%	87%	
Microdeletions	1:3000	33%	100%	

*Cumulative PPV is based on combined analysis of references 2 to 7 along with Quest unpublished data from third-party testing (excluding QNatal data).

American College of Obstetricians and Gynecologists guidelines (Committee Opinion No. 640, September 2015) recommend that women who receive a "no-call" test result from cfDNA prenatal screening should not only receive genetic counseling, but also be offered comprehensive ultrasound evaluation and diagnostic testing because of an increased risk of aneuploidy.[†]

QNatal Advanced validated technology and advanced bioinformatics generate low nonreportable rates, so you and your patients can count on test accuracy and avoid retesting or unnecessary invasive procedures.

Note: Noninvasive prenatal screening (NIPS) is for screening purposes only and is not diagnostic.

References:

1. Anderson B, et al. An automated, non-invasive prenatal screening assay (NIPS) for trisomy 21,18,13 in singleton and twin gestations [FIGO abstract FCS79.3.]. Int J Gynaecol Obstet. 2015;131(Suppl 5):E264. 2. Choy KW, et al. American Society of Human Genetics 2013 Annual Meeting; Boston, MA; 2013 [abstract 19]. 3. Meck JM, et al. American College of Medical Genetics and Genomics (ACMG) 2014 Annual Meeting; Nashville, Tennessee; 2014 [abstract 17]. 4. Zhang H, et al. Non-invasive prenatal testing for trisomies 21, 18 and 13: clinical experience from 146,958 pregnancies. Ultrasound Obstet Gynecol. 2015;45:530-538. 5. Yao H, et al. Detection of fetal sex chromosome aneuploidy by massively parallel sequencing of maternal plasma DNA: initial experience in a Chinese hospital. Ultrasound Obstet Gynecol. 2014;44:17-24. 6. Cheung SW, et al. Accurate description of DNA-based noninvasive prenatal screening. N Engl J Med. 2015;72:1675-1677.7. Norton ME, et al. Cell-free DNA analysis for noninvasive examination of trisomy. N Engl J Med. 2015;372:1589-1597. † ACOG. Committee Opinion No. 640: Cell-free DNA screening for fetal aneuploidy. Obstet Gynecol. 2015;126:e31-e37.

Twins	T21	T18	T13	Monosomy X
# Pos/# Specs	10/115	4/115	1/115	N/A
Positives Detected	10/10	4/4	1/1	N/A
Sensitivity (%)	>99.9	>99.9	>99.9	N/A
Specificity (%)	>99.9	>99.9	>99.9	N/A

A very low "no-call" rate

In commercial experience, including an analysis of the first 10,000 patients, QNatal Advanced demonstrated an overall "no-call" rate of 0.88%.¹

Reducing the "no-call" rate means:

- Less uncertainty in referral to invasive diagnostic tests
- Less potential incidence of procedure-related miscarriages

Oral Presentation at FIGO!

What is already known?

- Noninvasive prenatal screening (NIPS) assays use cell-free DNA in the blood of a pregnant woman to detect fetal chromosome aneuploidies (e.g., trisomies and sex chromosome aneuploidies)
- Compared to traditional screening methods, such as maternal serum marker screening and ultrasound imaging, NIPS has a lower false-positive rate. Thus, multiple organizations recommend NIPS for screening high-risk pregnancies for chromosome aneuploidies
- NIPS assays in general have good performance characteristics, but there is variability between assays; thus, it is important to validate each assay and report performance characteristics
- While sensitivity and specificity are important assay characteristics, the positive predictive value (PPV) is more clinically relevant. PPV describes the likelihood of a positive result being true in a specific population, which is especially important when a screen could lead to more invasive procedures that carry risk of miscarriage and other complications

What was done in this study?

- The investigators developed an automated NIPS assay for trisomy 21 (T21), T18, and T13; the assay incorporates advanced, proprietary statistical analyses and bioinformatics processes
- Performance characteristics of the assay were established for unaffected gestations using 1,288 plasma samples previously analyzed by another NIPS laboratory
- These characteristics were then verified using samples from 2,085 singleton gestations, which included T21, T18, and T13 samples
- The assay was then validated using samples from 552 singleton and 115 twin gestations, which included T21, T18, and T13 samples, as well as a sex chromosome aneuploidy (SCA; XO)
- Results from the first 10,000 clinical cases tested with this assay were analyzed

What were the findings of this study?

- In validation the assay identified all aneuploidy samples for both singleton and twin gestations. No false-positive results occurred in the validation study; thus, sensitivity and specificity were both 100%
- Analysis of the first 10,000 "real-world" clinical samples identified T21 in 103 pregnancies, T18 in 36, T13 in 21, sex chromosome aneuploidies (SCAs) in 17, and microdeletion in 1
- Within this 10,000 patient analysis, an overall no-call rate of 0.88% was reported:
 - 0.59% were due to a low fetal fraction
 - 0.29% were due to unmet quality metrics, uninformative DNA pattern or technical and sample-related issues
- For patients with available follow-up data, PPVs were 97% (34/35) for T21, 90% (18/20) for T18, 75% (9/12) for T13, and 87% (7/8) for SCA; the single microdeletion case was also confirmed

What were the conclusions from the study?

- A NIPS assay with excellent performance characteristics, including high PPVs, was developed and validated
- The assay also provided high PPVs and low no-call rates in a reference laboratory setting

Oral presentation at FIGO 2015

Authors

B. Anderson¹, K. Zhang¹, Q. Nguyen¹, D. Tsao¹, Y. Liu¹, K. Livingston¹, A. Albi¹, C. Elzinga², W. Sun¹, C. Braastat², D. Rabin³, C. Strom¹

Affiliations

¹Quest Diagnostics, San Juan Capistrano, CA, USA

²Athena Diagnostics, Marlborough, MA, USA

³Quest Diagnostics, Madison, NJ, USA

FIGO World Congress of Gynecology and Obstetrics

October 4-9, 2015

Vancouver, BC, Canada

Time: Friday, October 9, 8:00-9:30 AM

Location: Vancouver Convention Center Room 114

Webpage:

pg. E264 http://www.ijgo.org/pb/assets/ raw/Health%20Advance/ journals/ijg/XXI_FIGO_ abstracts.pdf

QuestDiagnostics.com

Quest, Quest Diagnostics, any associated logos, and all associated Quest Diagnostics registered or unregistered trademarks are the property of Quest Diagnostics. All third party marks—® and ™—are the property of their respective owners. © 2016 Quest Diagnostics Incorporated. All rights reserved. SB5017 1/2016